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In t roduc t ion  

Since the concept o f  o s i t i v e  rea l  functions 
was introduced by Brune [l! i n  1931, i t  not on ly  
l a i d  the basis f o r  a l l  o f  the  r e a l i z a t i o n  theory 
o f  e l e c t r i c a l  networks [2], but  was subsequently 
u t i l i z e d  i n  areas as diverse as absolute s t a b i l i t y  
and hyperstabi l  i ty, optimal i ty and s e n s i t i v i t y  o f  
dynamic systems. The appeal t o  pos i t i ve  rea l  func- 
t i o n  fo lmulat ion i n  these areas was based la rge ly  
upon the physical i n s i g h t  o f fe red  by the pos i t i ve  
rea l  concept as we l l  as the mathematical compact- 
ness o f  the formulation. I n  applications, however, 
the usefulness o f  the  pos i t i ve  rea l  concept u l t i -  
mately depends on the e f f i c i ency  o f  the numerical 
procedure f o r  t es t i ng  the pos i t i ve  r e a l  character 
o f  a given func t ion  o r  mat r ix  representing a net- 
work o r  system o f  a considerable complexity, For 
obvious reasons, the procedure should lead t o  sys- 
tematic algebraic schemes which can read i l y  be pro- 
grammed f o r  computer appl icat ions. 

As known [2], the algebraic tes t i ng  o f  the 
pos i t i ve  rea l  character o f  a ra t i ona l  funct ion i n -  
volves two polynomial algorithms, namely the Routh 
array and the Sturm method, which are performed by 
two essent ia l l y  d i f f e r e n t  schemes [3]. While the 
Routh array i s  executed by a simple recursive pro- 
cess, the Sturm method requires a construction o f  
Sturm's functions by repeated polynomial d iv is ions  
which are inconvenient f o r  numerical calculat ions. 
Furthermore , cer ta in  nonsys tema ti zed addi t ional  
analysis i s  required i n  the Sturm method when poly- 
nomials t o  be div ided are no t  r e l a t i v e l y  prime, It 
i s  surpr is ing t h a t  only recent ly  i t  has been shown 
[4] how the well-known Routh array can be modif ied 
t o  carry out the required Sturm's procedure and, 
therefore, perform the e n t i r e  pos i t i ve  rea l  t e s t  
by using the Routh algorithm. 
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I n  t h i s  work, we w i l l  give a complete account 
o f  the modif ied Routh algori thm f o r  pos i t i ve  rea l -  
ness and solve the important problem o f  s ingular 
cases which was only b r i e f l y  indicated i n  [4]. 
This w i l l  lead t o  a recursive, computer or iented 
scheme w i th  super ior  effect iveness over the pre- 
sent numerical procedures f o r  t es t i ng  the pos i t i ve  
rea l  character o f  rea l  ra t i ona l  functions. An im-  
portant by-product o f  t h i s  r e s u l t  i s  a so lu t ion  o f  
the c lass ica l  algebraic problem: the  formulation 
o f  necessary and s u f f i c i e n t  condit ions on the co- : 
e f f i c i e n t s  o f  a rea l  polynomial under which the 
polynomial has a cer ta in  number o f  rea l  pos i t i ve  
zeros. 

Another important aspect o f  t h i s  work l i e s  i n  
the formulation o f  the general e x p l i c i t  condit ions 
f o r  pos i t i ve  realness, It i s  remarkable tha t  the 
derived determinantal condit ions are analogous t o  
the celebrated Hurwitz conditions. That such con- 
d i t i ons  are no t  avai lable despite a r e l a t i v e l y  
long h i s t o r y  o f  the pos i t i ve  rea l  concept i s  pro- 
bably due t o  the automatic use o f  the Sturm method 
which obscures the issue and discourages any attempt 
i n  t h i s  d i rec t ion .  

Extension o f  the obtained c r i t e r i a  t o  the tes t -  
i ng  o f  rea l  ra t i ona l  matrices i s  straightforward 
and i s  derived f o r  the sca t te r ing  matr ix formula- 
t i o n  f o r  obvious prac t ica l  reasons. 
l y  here tha t  the proposed new t e s t  i s  by f a r  the 
most e f f i c i e n t  scheme among the ex i s t i ng  numerical 
procedures f o r  t es t i ng  the pos i t i ve  rea l  character 
o f  rea l  ra t i ona l  matrices. 

Fundamental Algebraic Problem 
We s t a r t  w i th  a d e f i n i t i o n  o f  the pos i t i ve  

It i s  certain- 

rea l  funct ion [SI :  

Ve$L&on 1: A h d  mtLona.L @nction '? 

G(s) # (1 1 
cuith t e e a t i v d y  pdme polynamiaed p(s) and q(s) 

.cakXed poALtLve / r i a l  and o d y  id: 
(i) &the po&xn.U 

f (s)  - p b )  + q(s) (2) 

U 

(THRU) 
'c, 

(CODE) 
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’W) Re G C j d  {on aU ne& W. (3) 
: 4*?d I .  . . < *  

Rem& 1; ,If (3) i s  replaced by the s t r i c t  inequa- 
.s, 

1ity i i s ‘ % * . -  ,i ..: .I ,: 
.Re G ( i w )  > 0, f o r  a l l  r ea l  us (4) 

the funct ion G(s) i s  said t o  be bd%ictey pobLt.Lve 
h d .  

As i s  customary we c a l l  a funct ion G(s) rea l  
i f  the polynomials pfs)  and q(s) have r e a l  c o e f f i -  
cients, t ha t  is, they are rea l  polynomials. Fur- 
thermore, two polynomials are r e l a t i v e l y  prime i f  
they have no common cancellable factors, and a 
polynomial i s  said t o  be Hurwitz i f  i t  has a l l  
zeros w i th  negative rea l  parts. 

given function, one applies the Routh o r  Hurwitz 
t e s t  t o  v e r i f y  ( 5 )  and Sturm’s procedure t o  examine 
(ii) o f  De f in i t i on  1. The Sturm procedure i s  
ac tua l l y  used t o  t e s t  the polynomial i nequa l i t y  

To es tab l i sh  the pos i t i ve  rea l  character o f  a 

f o r  a l l  r ea l  u 0 (5) 

wi th  p(S0) = pr(u) + i p i ( d  and q( iu )  = qr(w) + 
iqi(w) , which i s  obviously equivalent t o  (3). 
The polynomial g(0 ) i s  rea l  and even. We assume 
tha t  the polynomials i n  ~ (1) are given as 

2 

where m ‘> a, and some o f  the coe f f i c i en ts  p, and 
qv may be missing but not p,. Since G(s) i n  (1) 
i s  pos i t i ve  rea l  i f  and only i f  G”(s) i s  pos i t i ve  
real ,  when m 
Therefore. (5) can be w r i t t e n  as 

a we examine G’l(s) instead o f  G(s). 

where 2n = [even (m + a)], which means tha t  2n i s  
equal t o  the la rges t  even integer contained i n  
m t a, and 

In  formula (8), the coe f f i c i en ts  which are 

From (7) ,  we have the  obvious prel iminary 
missing i n  (6) are replaced by zeros. 

resu l t :  
L e m a  1: 
i d  and only i d  g(w2) f go  ha^ no p o b m v e  heat 
Z W b  O d  O d d  rnu&%pLidty and g(w12) > 0 doh bOt?le 

Potynomiae g(w2) 2.0 doh aae he& 0 I, 0 
I 

> 0; O h  g(w2) f go 2 0. w1 - 
Remmk 2: Condition g(wl2) > 0 f o r  some w1 2 0  
can be replaced by e i the r  go > 0 ( tha t  i s ,  
g(0) > 0), o r  g2n > 0 ( t h a t  is,  g(+-) > 0), which 
are easy t o  ver i f y ,  I n  the fol lowing, when 

3 3 0  

when go = g2 = ... = gei = 0, we can w r i t e  

g(w ) = - 2i+2g1(w2) and consider the reduced poly- 
nomial gl(w 1. 

I n  case o f  the s t r i c t  pos i t i ve  realness 
(Remark 1). we w i l l  need: 

Lama 2 :  ~oeynomiae g(w2) 2 0  doh a . ~  heat w ‘0 
i d  and only i d  g(w2) has no h a t  pobLt.Lve Z ~ O A  and 
g(w1 

Therefore, the p a r t  (ii) o f  the above de f i n i -  
t i o n  i s  reduced t o  the problem o f  f i nd ing  the 
necessary and s u f f i c i e n t  condit ions under which a 
rea l  even polynomial has no rea l  pos i t i ve  zeros o f  
odd m u l t i p l i c i t y  o r  none a t  a l l .  I n  the fo l low ing  
section, we w i l l  f i r s t  solve the  general problem: 
detercmine f i e  necebbarry and budd-icient condition6 
on f i e  coed,jich.tx 06 a g i v e n  heat poeynomiae bo 
.#at f i e  po1ynomh.t has a cc%tdn numberr 06  pobi- 
Z&e h d  zerrob. The so lu t ion  o f  t h i s  problem w i l l  
be given by the Routh algor i thm which i s  modif ied 
as suggested i n  [SI. Then, we w i l l  extend the ob- 
tained r e s u l t  t o  the even polynomials, 

For now, i t  may be of i n te res t  t o  mention the 
fo l low ing  t r i v i a l ,  bu t  useful  r e s u l t  [7] which i s  
derived from (7) and the well-known Decartes r u l e  
o f  signs: 

~hcmem 1 : Potynomiae g(w2) > o 60h a~ R e a t  w I, 0: 
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2 > 0 doh Arne u1 2 0 v 

(1) i d  
90 > 0, g2k )OD = 2 S * e * 9  n; (9) 

and (i i ) only i d  ;the Z o U  numbm 06 b a n  vahia- 

A even. 

c ients gEk depend on parameters and one i s  in- 
terested t o  f i n d  the region i n  the corresponding 
parameter space such tha t  g(w2) > 0 f o r  a l l  r ea l  
w I, 0, [6] 

C O M  hl f i e  C O e f ( d i & e d  g2k (k = 0, 1 , .e . ,  n) 

Inequa l i t ies  (9) may be u t i l i z e d  when c o e f f i -  

Modified Routh Algorithm 

We f i r s t  prove our general resu l t :  

Theohem 2: The numberr 06 didCninct p O b U V e  n u t  
zmob  06 f i e  heat p0Lynomh.t 

(10) 

.ib 
n 

n = n - V[(-1) hn, (-l)nnhn,...s ho] (11) 

(-lInnhn (-1ln-’(n - l)hn-l ... -hl (12) . . . . 
h0 



and ho # 0. 

Rem& 3: We note t h a t  the f i r s t  two rows o f  the 
Routh array (12) are formed by the coe f f i c i en ts  o f  
the polynomials h(-s) and h'(-s) I dh(-s)/ds. 

known Sturm theorem (Theorem 1, Chapter XV, Refer- 
ence 3): 

Thwhem 3: 
ht?d ZehOb 06 a h& potynomiae h(s) .& 

To prove Theorem 2, we s t a r t  w i th  the wel l -  

The nwnbeh n 06 ,the & f i n d  p o 4 W v e  

mial hl (s). 

Rem& 5: Obviously, t o  determine the number o f  
negative rea l  zeros o f  h(s), we apply Theorem 2 
t o  the polynomial h(-s). 

I n  case o f  the rea l  even polynomial g(w ) o f  
(71, we replace u2 by w and form the  Routh array: 

2 

whehe I denotes ,the Cauchy index  and 
h'(s) E dh(s)/ds. 

[3] we w i l l  transform expression (13) u n t i l  i t  
can be evaluated by the Routh algorithm. A h i n t  
fo r  t h i s  transformation l i e s  i n  a theorem o f  
S t i e l t j e s  (Theorem 15, Chapter XV, Reference 3). 

We assume t h a t  ho f 0, and rewr i t e  (13) as 

2 

By using the  propert ies o f  Cauchy i nd i c ies  

h'(s) wh'(w ) 

h(s) h(w2) 
'II = I+- - = 1;- - 

2k-1 n 

k=l  
1 k h k W  

2k n 

k=l  
1 h k W  

Following Routh, we compute the Cauchy index 
i n  the l a s t  equation o f  (14) by the array (12) and 
obtain (11). This proves Theorem 2. 

R W h  4: The hqueah Routh array takes place when 
none o f  the numbers i n  the f i r s t  column o f  the 
array vanish. A bingueah array ar ises when: (a) 
an element o f  the f i r s t  column becomes zero, but 
no t  a l l  o f  the numbers i n  the  corresponding row 
are zero; and (b) a l l  the numbers i n  a row o f  the 
array vanish simultaneously. The case (a) i s  o f  
no i m  ortance and i s  resolved by standard techni- 
ques f3]. The case (b) indicates t h a t  h(s) and 
h ' (s )  have common zeros, t h a t  i s ,  they are no t  
r e l a t i v e l y  prime which means t h a t  h(s) has d- 
aX Le zetrob. We Roostpone the consideration o f  the 
mu f t i p le  zeros t o  the next section. For now, we 
r e c a l l  [3] t ha t  t o  continue the  Routh algori thm 
i n  case (b), i t  i s  necessary t o  replace the row 
o f  zeros by the coe f f i c i en ts  o f  the f i r s t  deriva- 
t i v e  o f  the polynomial formed by the preceeding 
row. We also note t h a t  the  assumption ho # 0 
means no loss o f  genera l i t y  since when 
h,, = hl = ... = hi = 0, we can w r i t e  

h(s) si+'hl(s) and consider the reduced polyno- 

. . . (15) 

90 
which was used i n  [4]. 

Remark 4, we get: 
coho&hhy 1: The numben n 06 ,the p o 4 W v e  h d  

By applying Theorem 2 and the  array (15) w i th  

z m 4  od g(w2) A 

n = n - V[(-1)'gZn, (-1) n ngZn,*.., go], 

whme V 0 &e nwnbm 06 4' n vahiatiom Ln ,the 

(16) 

&iht c o h n  06 ,the a w a y  Y ( 5). 
We need immediately a more speci f ic :  

C o h o L h  2: 
ghee 2n ~ u A  no pobh%~e  Z-Ob (II = 0) i d  and Ot@ 

A he& even potynomiae g(o 2 ) 06 de- 
.. 

2 Remaha 6: Since the polynomial g(w ) i s  even 
and w i th  rea l  coe f f i c ien ts ,  the rea l  zeros appear 
i n  pa i rs  and Corol lary 1 y ie lds  imnediately both 
the rea l  pos i t i ve  and rea l  negative zeros (if such 
zeros exist ,  Corol lary 2). 

Before we s ta te  our main r e s u l t  concerning the 
pos i t i ve  rea l  functions, l e t  us r e c a l l  the o r i g i -  
nal Routh t e s t  [3] used t o  t e s t  the Hurwitz charac- 
t e r  o f  the polynomials w i th  real  coe f f i c ien ts ,  
This i s  needed f o r  pa r t  ( 5 )  o f  De f in i t i on  1. Let 
us consider the polynomial f ( s )  i n  (2) w r i t t e n  as . .  

m 

w=o 
f ( s )  I 1 fWSW , fm # 0, 

where, according t o  (6)s we have 

fw = pw + qw , w = 0, 1, ..* , m, (19) 

p # 0, and qw 3 0 f o r  w > a . As known [S I ,  the m 
polynomial f ( s )  i s  Hurwitz i f  and on ly  i f  i n  the 
corresponding Routh array: 
doh m even doh m odd 

fm fm-2 * a *  f2 fo fm fm-2 * * a  f2 fo 
fm-1 fm-3 ' 6 .  fl fm-lfm-3 * * *  f3 f1 

fO fO 

(20) . .  . .  . .  . .  . .  
a l l  elements o f  the f i r s t  column are d i f f e r e n t  
from zero and o f  l i k e  sign, t ha t  i s ,  
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VCfm, fm-l s . .. s f o l  = 0 (21 1 
Now, by using Corol lary 2, Lema 2, and Re- 

mark 4, we obtain d i rec t l y :  
Thwaem 4: 

i d  : 

RoCLth m y  (20) with 

and 

m y  (15) ULith 

A J L ~  d o n a t  d unction 
( 5 )  utith neeativeey ph(me poeynomiaes 
iA dRnictey podLtLve &eat i d  and o d y  

(i) Rhe po.tyn& f ( s )  poduces u /reg* 

VCf,, f m - l s  * * e  e f o l  = 0; (21 1 

(if) athe po&tOmiae g(w2) plroduce~ u RoLLth 

n V[(-1)'g2,,, (-1) ng2,,, ... e sol  = n (17) 

and go > 0 .  

This r e s u l t  was obtained i n  [4] and i s  con- 
s iderably simpler than the one derived i n  [9], 
since the modif ied Routh array (15) .proposed here 
operates d i r e c t l y  on the coe f f i c i en ts  o f  polyno- 
mial  g(w2) and no intermediate steps are necessary. 

For nons t r i c t  pos i t i ve  realness o f  G(s), we 
need t o  t e s t  the weaker polynomial i nequa l i t  (7) 
which al lows f o r  pos i t i ve  rea l  zeros o f  g(w2f so 
far they are o f  even m u l t i p l i c i t y  (Lemma 1). We 
w i l l  show immediately t h a t  the Routh array (15) 
contains a l l  the necessary in fo rmat i  n about mu l t i -  

recursive algori thm f o r  determining those mu1 ti- 
p l i c i t i e s  i s  avai lable, 

We remember f i r s t  t h a t  the mu l t i p le  zeros o f  
g(w2) are indicated by occurrence o f  zero rows i n  
the corresponding Routh array (Remark 4). Le t  us 
enumerate the rows i n  the array (15) s t a r t i n g  from 
the top by j ( j  = 0, 1, ... 
preceeding a zero row by ju tu = 1 2, , . . , t) , 
Let us also def ine 

p l e  rea l  zeros o f  the polynomial a(. 8 ) and tha t  a 

2n) and the row 

1 
2 

nu = - (j,, - jUml) , u = 1, Z,..., t + 1 (22) 

w i th  jo = 1 and jttl = 2n + 1. For the number o f  
s ign var ia t ions  between the two consecutive rows 
jUsl and jus we w i l l  use the symbol Vu. F ina l l y ,  
we denote by nu the number o f  pos i t i ve  rea l  zeros 
the m u l t i p l i c i t y  u o f  the polynomial g(w ). The 
number ny we determine using the general recurr-  
ence formula 

2 

By applying Corol lary 1, the  formula (23) can 
be r e a d i l y  ver i f ied .  We need on ly  t o  no t ice  t h a t  
n 
bers o f  pos i t i ve  rea l  zeros corres onding t o  two 
consecutive zero rows i n  array (15!, and t h a t  the 
m u l t i p l i c i t y  o f  each zero o f  the tested polyno- 
mial  i s  reduced by one each time we go from one 
zero row t o  the next. 

Now according t o  D e f i n i t i o n  1, Lemma 1, and 
formula 123). we have: 
Theown 5: 
G(s)  = q(s)/p(s) ULith h W v d y  phime polynomiaed 

i s  ac tua l l y  the di f ference between the num- 
U 

A mat h.u.tLona.t  unction 

p(s) and q ( s )  h pobiXiVe he& 4 and only 4: 
the etements h the @at c o h n  06 

the Rodh m y  (20) plroduced by a%e poLynomiae 
f ( s )  me di6derrent 6kom zeho and 06 l i k e  b i g ;  and 

the numbm nu poduced by Rhe POLY- 
llomiae g(o ) f go and the  Ro& 
equd bo Z e h O  d o t  O d d  u = 1, 3 , . 3 0 d d  (t +I)]$ 
w h a e  t $A the numberr 06 zeho hnlc~ .in m y  (15 , 

gest integer contained i n  (t +-1 3 , 
R m k  7: 
array (15), then Theorem 5 i s  reduced t o  Theorem 
4, I n  t h i s  case, nl = n1 - V1, where n1 = n and 
V1 = V (see Corol lary 1). 

Rem& 8: Since recurrence formula (23) involves 
on ly  two consecutive rows a t  the time, the t e s t  
may be discontinued when we f i r s t  encounter 
n # 0 f o r  odd U. 

Remarrk 9: 
two rows o f  the Routh array by the coe f f i c i en ts  
o f  p(s) and q(s),  then, p(s) and q(s)  are re la -  
t i v e l y  prime i f  and only i f  there i s  no rows i n  
the array tha t  vanish i den t i ca l l y ,  

i n  t h i s  section a l l  one needs i n  tes t i ng  pos i t i ve  
realness i s  the Routh Algorithm. 

(i) 

(ii) 
(15) me 

and g(wl ) > 0 $ox Arne 01 0; ox g(w2) I go 2 0. 

I n  ( S i )  above, [odd (t + 1) means the l a r -  

I f  there are no zero rows (t = 0) i n  

U 

As shown i n  [lo], i f  we form the f i r s t  

It i s  remarkable tha t  w i th  resu l t s  obtained 

Modif ied Hurwitz Cr i t e r i on  

An a l te rna t i ve  way t o  compute the Cauchy in -  
dex i n  (14) i s  by the Hurwitz approach [3], which 
y ie lds  e x p l i c i t  condit ions f o r  p o s i t i v i t y  o f  G(s) 
i n  terms o f  i t s  coe f f i c ien ts .  The Hurwitz- l ike 
so lu t ion  i s  more appealing i n  cases where the 
coe f f i c i en ts  are not given numerical ly but depend 
on parameters. 

mal ly generate the desired determina 
By using the Routh array (15), we can fo r -  

. . . 

t s  : 

(243 

j i  . . . * . .  
90 

which represent the f i r s t  column o f  the array (15). 
Since AZn = 90"n-19 by using Corol lary 1 wear r ive  
at: 
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L 

e.-- & 

Theoh? 6: The n~m6e.h n 0 4  .the pOb&ve h& Z W 6  
04 g(w ) A gLven by  

= n - V[(-1)ng2n, Ale A2/A11’--., A2n-1/A2n-2s s o l  
(25) 

phavided A # 0 ,  j = 1, 2,. ..,2n - 1, and go > 0 .  

angularization o f  the  mat r ix  correspondina t o  A2n 

which reduces i t  t o  the Routh matr ix defined by 
(15). This process i s  described i n  [3]. 
Remuhk 10: When some o f  the  determinants i n  (25) 
are equal t o  zero (s ingular case [3], but  

# 0, i n  ca lcu la t ion  of V f o r  each group o f  a ‘2n-1 
(odd) successive zero determinants 
(A,, # 0) Ap+l = e - *  A p t a  0 ( A p t X + l  # 0) (26) 

we have t o  set: 

j 
This theorem can read i l y  be proved by the tri- 

V(Ap/Ap_1 * A p t l + * *  * Ap+a+2/A~ta+l 1 

as shown i n  [3]. 

again the polynomial f(s! i n  (18) and r e c a l l  631 
tha t  the polynomial i s  Hurwitz i f  and only i f  

For the sake o f  com leteness, l e t  us consider 

(28) 

which i s  the well-known Lienard-Chipart r e s u l t  [3]. 

As i t  was pointed out i n  [3], i f  the c o e f f i -  
c ien ts  o f  the tested polynomial are given numeri- 
ca l l y ,  then the Routh algori thm i s  by f a r  the 
s imp l i s t  procedure f o r  computing the Hurwitz de- 
terminants and executing the Stunn procedure. 
Therefore, when tes t i ng  a rea l  ra t i ona l  funct ion 
w i th  speci f ied coe f f i c i en ts  f o r  possible pos i t i ve  
realness, the resu l t s  o f  the preceeding section 
are recommended, 

Matr ix General izat ion 
Extension o f  Theorem 5 t o  the matr ix case i s  

We s t a r t  w i t h  [ll]: 

desirable since i t  promises a pos i t i ve  rea l  t e s t  
w i th  a sa t is fac to ry  ana ly t i c  s imp l ic i t y .  

De~ini t ion 2: A h e d  d o n u l  m x m m a t h i x  G(s) 

(i) G(s) hu.6 no poled luith p o b X v e  heat 

( i i )  p o t u  06 G(s) on Re s = 0 uhe 6 h p t e  

po6.iZ;ive he& 4 and only 4: 

w; 
and the  cornuponding kedidue m a t h i x  .Ln nonnega- 
a v e  de&iniZe U u m L i i m  ; and 

(iii) G ( i w )  t G * ( i w )  7 0 doh ukY k e d  w 6uch 
&that i w  A not a poLe 06 G r i w ) .  

To avoid com l i c a t i o n s  involved i n  tes t i ng  
the condi t ion ( i i p  o f  De f in i t i on  2, we may per- 
form ce r ta in  mat r ix  transformations and use the 
we1 1 -known E111 : 

f i v e  a d  i d  and only i d  ,the camuponding k e d  
ha,tionat 6 c a t t d n g  m a t h i x  

.LA bounded he&, .that A, 

Theohem 8: A h d  dad m a t h i x  G(S) A pObi -  

S(s)  = [G(s) - I][G(s) + I]” (33) 

(i) S(s) A a n u l y a c  i n  Re s 0; and 
(ii) 1 - S * ( i W ) S ( i w )  20, doh lLee k e d  w.(34) 
Let us now consider the expression 

where F(s) i s  a rea l  polynomial m x m matr ix and 
f ( s )  i s  a rea l  scalar polynomial r e l a t i v e l y  prime 
t o  F(s). If we rewr i t e  (33) as 

and use (34) t o  form the  Hermitian m x m polyno- 
mial  mat r i x  

we a r r i v e  imnediately a t :  

po6.iZ;ive h d  i d  and o d y  4: 

r ( i w )  1 I f ( i w ) 1 2 [ 1  - s * ( i w ) ~ ( i w ) l  , (37) 

Theohm : A h d  m x m W x  G(S) 

(1) .the polynomicle f ( s )  E det  [G(s) + 11 A 

(ii) r ( i w )  2 0 , doh & he& w 2 0  , (38) 
Le t  us assume t h a t  the matr ix r ( i w )  i s  o f  the 

rank r, t h a t  i s ,  there i s  an r-th order p r inc ipa l  
minor o f  r ( i w )  which i s  no t  i d e n t i c a l l y  zero and 
a l l  the pr inc ipa l  minors o f  order r t 1 vanish 

H e ;  and 
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i den t ica l l y .  We denote by g(')(w2) t h i s  r - t h  order 
minor, and by g(e)(u2) the  associated p r inc ipa l  
minors o f  order e = 1, 2,..., r - 1. As i s  c lear  
from (37), the minors are rea l  even polynomials 
which can be w r i t t e n  as 

(39) 

Now, t o  v e r i f y  (38). we can use [5]: 
Theoxem 10: A Henmitian polynoniae m x m mathix 
r ( i w )  06 Rhe hank r > 0 iA nonnegative d e ~ i x L t e  
doh & ned w 2 0 i 6  and o d y  i d :  [a )  bok r > 1 , 

iA a b q u e n c e  06 Rhe phincipat m i n o u  
g(e)(o') f 0, e = I, 2,..., r - I, h u ~ h  - t ~  

g (e) ( w  2 ) 2 0 ,  {oh &k& w 

and e = 1, 2,..., r; and [ b )  doh r = 1, 
6011 & hed w 2 0. 

Rmmh 12: 
ment o f  r ( i w )  i s  i d e n t i c a l l y  zero and, therefore, 
r ( iw )  i s  nonnegative d e f i n i t e  f o r  a l l  r ea l  W. I n  
addition, we note tha t  t o  t e s t  (38) by Theorem 10, 
we can use without loss o f  genera l i t y  [ S I  the 
spec i f i c  sequence o f  the pr inc ipa l  minors 
g(e)(w2), e = 1, 2 ..., r = 1, where each g ( e ) ( ~ 2 )  

r - e rows and columns. The spec i f i c  sequence i s  
used i n  the fo l low ing  Theorem 11. 

t o  each inequa l i t y  (40p and w i t h  help o f  Theorem 
10 and Remark 12 ge t  from Theorem 9 our p r inc ipa l  
resu l t :  
Theokem 118 A k& l t a t i o d  m x m m d x  G(s) iA 
p o b U v e  &e& i d  and on& i d :  

( i )  & ,the dements i n  the ~i.a.hX column 06 
the Routh m a y  (20) prroduced by the polynami& 
f(s) L det  [G(s) +I] me di46ment (ham zeho and 
06 E k e  4.ign; and 

(ii) a.U the numb- 
RolLth ah/uy (15) and each &n&pa.t minoh 
g(')(w2) f go, e = 1, 2 ,... r, 0 4  the cohhebpand- 
ing m d x  r ( i w ) ,  ahe equal t o  z a o  4olr odd 
v = 1, 3,..., [odd(t + l)],whehe r 0 t h e  Rank 06 
r [ i w )  and t, iA the 8umba 06 t h e  z a o  JLOWA i n  the 
m a y  (15) genehuted by g(e)(w2). 

g(')(ue2) > 0 do& dome we > 0 and cdl 
e = 1, 2, ..., r. 16 g(e)(w 

I n  the t r i v i a l  case r = 0, each ele- 

i s  obtained from g ir)( w 2 ) by de le t ing  the f i r s t  

Final ly,  we can a p l y  the modif ied Routh t e s t  

pkoduced by the 

In a d d i t i o n ,  

- 2  - (e) ,  
= go then 6 0 ~  

r > 1, 90 (e) > 0, and box r 2 I, go ('1 - > 0. 

We can ac tua l l y  avoid the mat r ix  operations 
involved i n  forming the  sca t te r ing  matrix, i f  we 
wish t o  do so, and apply Theorem 11 d i r e c t l y  t o  
the matr ix G(s). This a l t e rna t i ve  i s  provided by: 
Theohem 12: A he& d o d  m x m m&x 
G(s) = Q(s)/p(s) ulith a he& polyn& m x m 
m m x  Q( s)  and a h& dedah polynomkk? p( s) he- 
k t . i . vdy  ,to Q(S)  .h pOb.&%e &e& i d  and 
only i d :  

(i) the polynomial f (s)  = de t  [G(s) + 11 i 6  
HwuoLtzj and 

($1) the H W  m x m polynomiae m u h i x  
A ( i w )  f p*(io)Q(iW) + p(io)Q*(i  ) bat idb ies  the 
.in&pUUtY 

A ( h )  2 0, 60k & k e d  w 0. (41 1 
I f  we rewr i t e  (40) as 

Ip(iw)12[G(iw) + G * ( i w ) l  > 0, 60k & h e d  

2[G(s) t G*(s)] = 

[I + G * b ) I C I  - S*(S)S(S)I[I + G(s)I, 
then from Theorem 8 the  necessity o f  (i) and ( i i )  
o f  Theorem 12 i s  automatic. Conversely, since 
de t  [G(s) t I] j! 0, condit ions (i) and (ii) o f  
Theorem 12 imply those o f  Theorem 8. Hence, i n  
Theorem 11, we.can use A ( i w )  instead o f  r ( i W ) .  

a re - fmct ions  o f  several complex var iables i s  
possible, which i s  o f  considerable i n t e r e s t  i n  
modern network theory 

Conclusion 
The pr inc ipa l  con t r ibu t ion  o f  t h i s  work i s  a 

unique and complete recursive algori thm f o r  t es t -  
i ng  the pos i t i ve  rea l  propert ies o f  rea l  ra t i ona l  
functions and matrices. The algori thm i s  en t i re -  
l y  based upon the fam i l i a r  Routh-Hurwitz scheme 
and, therefore, leads t o  a computer or iented pro- 
cedure w i th  superior e f f i c i ency  over the present 
techniques f o r  t es t i ng  pos i t i ve  realness. There 
i s  an apparent analogy between the obtained alge- 
b ra ic  c r i t e r i a  f o r  p o s i t i v i t y  (nonneqativi ty) o f  
a rea l  polynomial and the c lass ica l  Routh-Hurwitz 
c r i t e r i a .  Therefore, much remains t o  be done t o  
e x p l o i t  t h i s  analoay and a r r i v e  a t  new important 
resul  ts.  

- 
w 2 0 and note tha t  

(42) 

- An extension o f  t h i s  r e s u l t  t o  matrices t h a t  
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SUBOPTIMAL CONTROLS FOR LINEAR REGULATOR 
SYSTEMS WITH INACCESSIBLE STATES 

Turkish Ergin Ozer N\ 

95. Sokak, No. 
Goztepe, Izmir ,  . rkey 

A procedure f o r  de  
lers f o r  l i n e a r  regula  
The suboptimal c o n t r o l  
l i n e a r  funct ion of  the  s y s t e  uts .  The form 
of  t h e  t i m e  v a r i a t i o n  f o r  the 
matr ix  is  s e l e c t e d  a r b i t r a r i l y ,  he  f r e e  con- 
t r o l l e r  parameters a r e  ad jus ted  t 
maximum absolu te  degradat ion o f  s 
An algori thm f o r  computing t h e  co 
meters i s  d iscussed ,  and an ex ten  
r i thm which corresponds t o  a modi 
t h e  o r i g i n a l  problem i s  proposed. 

t-feedback g a i n  

Donald E. Kirk 
E l e c t r i c a l  Engineering 
Naval Postgraduate  Sc 
Monterey, Cal i forn i  

suggests  t h a t  roller parameters be found 
by minimaximiz performance measure o r  t h e  
relative o r  e devia t ion  of the performance 
measure f r  ptimal value. 

roposes a n e w  technique f o r  de- 
i m a l  c o n t r o l s  f o r  l i n e a r  regula-  
e cont ro l  law is':assumed t o  be 
ing feedback of t h e  system 
of  t h e  t i m e  v a r i a t i o n  i s  s e l e c t e d  

e the va lues  of t h e  f r e e  cont ro l -  
h a t  minimize t h e  maximum absolu te  
ystem performance. 

a computational procedure i s  

The Optimal Linear  Regulator Problem 

In t h e  optimal l i n e a r  r e g u l a t o r  problem t h e  
and output  equat ions  a r e  given by 

In t roduct ion  

The l i n e a r  r e g u l a t o r  i s  one of t h e  most 
s i v e l y  s tud ied  problems of  opt imal  c o n t r o l  theo- 
ry.' 
from the f a c t  t h a t  many p r a c t i c a l  c o n t r o l  p 
can be formulated i n  t h e  form of a l i n e a r  
t o r .  I n  a d d i t i o n ,  t h e  feedback form of  
mal s o l u t i o n  t o  t h e  problem i s  a very d 
f e a t u r e .  P r a c t i c a l  a p p l i c a t i o n  of t h e  
s o l u t i o n  t o  a l i n e a r  r e g u l a t o r  prob 
from two s e r i o u s  drawbacks: t h e  t i m  

phys ica l  measurement o f  the  V a l  

The importance of l i n e a r  r e g u l a t o r s  s t  

a v a i l a b l e  f o r  measurement. h it i s  possi-  

an est imate  o f  h a t  i s  bes t  i n  
some sense whe , i n  many cases  
t h e s e  schemes l y  j u s t i f i a b l e .  

ptimal c o n t r o l s  
which are easy minimally i n f e r i o r  
i n  some sense s has a t t r a c t e d  
t h e  a t t e n t i o n  

2, o r  t o  o b t a i n  

t i a l  s t a t e ,  o r  a 
i a l  condi t ions  is  

method of d 
f i e s  t h e  co 

o t h e  opt imal  performance measure. Another 
h is  t o  assume t h a t  t h e  admissible i n i t i a l  

e t h e  expected va lue  of t h e  performance measure 
r t h e  admissible  i n i t i a l   state^.^ Salmon8 

- \  

N 
(3)  

where to and t > to are n i t i a l  and f i n a l  
times, respec t ive ly ,  x = i s  t h e  i n i t i a l  
s t a t e ,  2 i s  a r e a l  s a e t  
n i t e  matr ix ,  g ( t )  i s  a t 
metric p o s i t i v e  semi-def 
time-varying r e a l  symmetric pos 
matr ix ,  and t h e  f i n a l  s t a t e  x ( t  
Kalmanlt:! has  shown t h a t  the-op 
ists and is given by 

\ 
where z ( t )  is t h e  unique symmetric p o s i t i v e  
n i t e  s o l u t i o n  of t h e  matr ix  R i c c a t i  equa t ion  

k ( t )  = -K(t) A(t) - h T ( t )  K ( t )  - Q(t) 
Y - -  N N 

+ N N N  K(t) B( t )  R-'(t) z T ( t >  &( t )  (5) 
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